Кинематический анализ планетарной коробки передач

Информация » Расчет планетарной коробки переключения передач трактора » Кинематический анализ планетарной коробки передач

Страница 2

Третья передача. Она обеспечивается включением тормоза Т3. Здесь под нагрузкой работают планетарные ряды 7, 11 и 14.

Перепишем уравнения кинематики ТДМ для указанных планетарных рядов:

При включении тормоза Т3 на данной передаче (см. рис. 3) nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18=0; nв14= nс11= nс18.

Решая уравнения кинематики с учетом уравнений связи, определим передаточное число ПКП:

Из схемы ПКП следует, что

Из уравнения кинематики для планетарного ряда 11,14 и 18 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 11 и 7 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 18 с учетом уравнений связи определим

Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:

Четвертая передача. Она обеспечивается включением тормоза Т4. Здесь под нагрузкой работают планетарные ряды 7, 11, 14 и 18.

При включении тормоза Т4 на данной передаче (см. рис. 3) nв7= nв11; nа7=nвщ; nа11= nа14=nвм; nс14= nс7= nв18; nв14= nс11= nс18; nа18=0.

Решая уравнения кинематики с учетом уравнений связи, определим передаточное число ПКП:

Из схемы ПКП следует, что

Из уравнения кинематики для планетарного ряда 7,14 и 18 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 11,14 и 18 с учетом уравнений связи определим

Из уравнения кинематики для планетарного ряда 11 с учетом уравнений связи определим

Определим относительные частоты вращения всех сателлитов ПКП при включенной первой передаче. Для этого используем выражение [1,2.11]. В результате получим:

Частоты вращения всех центральных звеньев ПКП и

относительные частоты вращения сателлитов, об/мин

Таблица 5

Передача

1

2

3

4

Нагруженные ряды ПКП

7, 11, 14

7, 11, 14

7, 11, 14

7, 11, 14, 18

nа7=nвщ

2000

2000

2000

2000

nа11= nа14=nвм

758

962

1258

1563

nв7= nв11

0

328

667

1163

nс14= nс6= nв18

1000

641

0

744

nв14= nс11= nс18

393

0

503

1072

nа18

2378

2096

1142

0

nВ07

4000

3344

2667

1674

nВ011

1630

1363

1270

860

nВ014

4604

3848

3020

1964

nВ018

2170

2291

1798

1172

Страницы: 1 2 3

Еще о транспорте:

Составление производных уравнений
Производные уравнения отличаются от исходных и друг от друга комбинацией входящих в уравнения частот вращения центральных звеньев. Общее число исходных и производных уравнений W определяется числом возможных сочетаний из общего числа частот вращения тормозных звеньев р , ведущего и ведомого звеньев ...

Повреждаемость фрикционных планок
В эксплуатации в результате перемещения клина происходит износ фрикционной планки и на ее трущейся поверхности образуется углубление (рис. 2.5). Рис. 2.5. Износ фрикционной планки Буртики, образующиеся при износе, ограничивают перемещение клина при больших величинах возмущающих сил со стороны пути ...

Вычисление и построение графика суммарной нормальной силы
Суммарная нормальная сила КΣ, действующая на шатунную шейку кривошипа по направлению его радиуса определяется по формуле: Значение тригонометрического многочлена, входящего в расчетную формулу, для различных значений α выбирается по таблице 2.6 [1, стр. 22] Для α = 30 º Результа ...

Главное Меню

Copyright © 2019 - All Rights Reserved - www.transportine.ru