Определение удельного выброса вредных веществ от автотранспортных средств

Информация » Разработка инновационной технологии организации пассажирских перевозок в Западном районе г. Гомеля » Определение удельного выброса вредных веществ от автотранспортных средств

Страница 2

- регулярные скоростные;

- регулярные экспрессные;

- регулярные экспрессные легковыми автомобилями и автобусами с разрешенной максимальной массой не более 5000кг;

- ночные перевозки.

Предусматривается необходимость работы автобусов в регулярном сообщении по расписанию, доводимому до пассажиров, для первого, последнего рейсов и при интервалах движения более 15 мин. Переход на расписание позволяет сократить число автобусов на маршрутах в межпиковое время без снижения качества обслуживания пассажиров. В настоящее время на отдельных перегонах маршрутов в вечерне-ночное время коэффициент вместимости снижается до нуля, что приводит к возрастанию Вуд до бесконечности, (загрязнение происходит, а полезная транспортная работа не производится). При этом расходуются материальные и трудовые ресурсы, используется моторесурс автобусов, возникает шумовое загрязнение, происходит износ дорог, создаются дополнительные транспортные потоки и возникает риск дорожно-транспортных происшествий.

В курсовом проекте для обслуживания нового маршрута было выбрано 2 вида подвижного состава МАЗ-103 и МАЗ-107.

Определим удельный объем выброса вредных веществ, в частности оксида углерода (СО), для нового маршрута (автобус МАЗ-103):

Вуд=2,89(25,0/(100*0,75*0,922)+0,01/0,922);

Вуд=1,08г.

Результаты расчетов сведем в таблицу 6.2.

Таблица 6.2 - Удельные объемы выбросов вредных веществ на маршруте

Марка автобуса

Удельный выброс вредных веществ, г

СО

NОх

СхНу

Твердые

частицы

СО2

SО2

Суммарный

МАЗ-103

1,08

1,7

0,71

0,145

25,88

0,6

30,12

МАЗ-107

0,98

1,55

0,65

0,13

23,62

0,55

27,5

Таким образом, экологичность пассажирского автомобильного транспорта определяется не только техническими параметрами транспортных средств, но и эффективностью их использования при выполнении перевозок.

В результате выполнения проекта на тему “Разработка инновационной технологии организации пассажирских перевозок в Западном районе г. Гомеля” был произведен анализ транспортного обслуживания г. Гомеля в целом, а так же Западного мкр-на.

В г. Гомеле в настоящее время насчитывается 51 автобусный маршрут общей протяженностью 667 км. Плотность транспортной сети города составляет 1,46 км/км2.Коэффициент охвата сети – 0,3. Маршрутный коэффициент равен 3,8.

Через мкр-н западный проходит 4 автобусных маршрута: №15,16,25,33. Данные маршруты обслуживаются автобусами 1 и 6 автобусных парков.

Максимальный интервал движения отмечен на маршруте №33 – 44 мин., а минимальный на маршруте №25В – 9 мин.

Анализ пассажиропотоков показал, что колебания пассажиров по длинам маршрутов носит относительно плавный характер: максимальная нагрузка приходится на перегоны середин маршрутов, и спадает к концу и началу.

Характер изменения пассажиропотоков на каждом автобусном маршруте и по городу в целом характеризуется коэффициентами неравномерности.

В соответствии с Генеральным планом развития города г. Гомеля до 2030 г. В городе планируется строительство новых микрорайонов. Что неизбежно ведет за собой развитие транспортной инфраструктуры.

Анализ маршрутной системы города показал, что не все крупные районы и микрорайоны города в настоящее время имеют прямую связь между собой. Так в частности Новобелицкий район и мкр-н Западный не связаны прямым маршрутом.

Поэтому в качестве инновационной технологии развития пассажирских перевозок было принято решение о введении нового автобусного маршрута «Западный мкр-н - РЦРМ».

Общая протяженность маршрута в прямом и обратном направлениях составляет 28,2 км. Время движения от начально до конечного остановочных пунктов составляет 43 мин. Без учета времени затрачиваемого на посадку-высадку пассажиров - время движения составляет 32 мин (0,53 ч).

Страницы: 1 2 3 4 5

Еще о транспорте:

Карданная передача
При размещении одного агрегата относительно другого на некотором расстоянии вращающий момент передаётся через карданные передачи. Они предназначены для передачи вращающего момента между агрегатами, оси валов которых могут смещаться при движении. Их применяют главным образом на автомобилях для соеди ...

Динамика кривошипно-шатунного механизма
При работе двигателя на детали кривошипно-шатунного механизма действуют силы от давления газов, силы инерции, центробежные силы и давление на поршень со стороны картера (приблизительно равное атмосферному давлению). Все действующие в двигателе силы воспринимаются полезным сопротивлением на коленчат ...

Расчет и построение тяговой характеристики
Линейная скорость движения автомобиля Тяговая сила на ведущих колесах Сила сопротивления воздуха движению автомобиля , где коэффициент лобового сопротивления площадь лобовой поверхности, равна 1,91 м2 Сила сопротивления качению колес , где для радиальных шин fT - 0,02 коэффициент сопротивления каче ...

Главное Меню

Copyright © 2023 - All Rights Reserved - www.transportine.ru