Расчет пневмопривода

Страница 2

Определим угол наклона поперечного сечения в месте приложения силы Р (рисунок 5.5), для этого приложим в этой же точке единичную безразмерный изгибающий момент. Эпюра изгибающих моментов от приложенного момента изображена на рисунке 5б, значение максимального изгибающего момента 1. Угол наклона рассчитывается по такой же формуле, для конкретного случая она приобретает вид:

d = 12×(P×a2/2 + 2×R2×b2/3) /(E×h4), м (5.22)

d = 12×(1342,4946×0,22/2+ 1917,8494×0,32/3)/(2×1011×0,0224) = 0,7618, град

Рассчитаем на прочность точки опоры выше рассчитанных стержней , которые представляют собой валы, закрепленные на подшипникх скольжения. Расчеты проводим по наиболее нагруженному валу. Материал вала принимаем Сталь 40 (ГОСТ 1050 – 88) [1] допускаемые напряжения на изгиб у которой определены ранее [s] = 170 МПа. Из выше проведенного расчета Р = 3260,3440 Н, при этом расстояния принимаем равными: а = 60 мм, b = 60 мм.

Определим реакции опор (рисунок 5.5): т.к. схема нагрузки вала симметрична , то R = P = 3260,3440 H. Максимальный изгибающий момент М = R×a =195,6206Н.

Рассчитаем требуемый диаметр вала:

d = 3Ö32×М/(p×[s]), м (5.23)

d = 3Ö32×195,6206/(p×170×106) = 0,0227 м.

Принимаем диаметр вала d = 0,024 м.

Так как вал установлен на подшипниках скольжения, то определим диаметр вала под подшипник dП, и отношение b = LП/dП, где LП – длинна вала в подшипнике. Материал подшипника скольжения принимаем бронзу, для которой допускаемое удельное давления [p] = 8,5 МПа.

b = Ö0.2×[s]/[p], м (5.24)

b = Ö0,2×170/8,5 = 2,

dП = Öb×R/(0.2×[s]), м (5.25)

dП = Öb×3260,3440/(0,2×170) = 0,0138 м,

Принимаем dП = 0,014 м.

Перемещение стержней крепления пневмоцилиндра, а следовательно и вращение валов опор будет осуществляться усилием руки человека, поэтому тепловой расчет подшипников скольжения проводить нецелесообразно.

Рассчитаем болты крепления опор с подшипниками скольжения к раме. Принимаем для расчета, что болты изготовлены из Стали 40 (ГОСТ 1050 – 88) [1] и на каждую опору ставиться по 3 болта без зазора. Условие прочности болта на срез:

tср = 4×Q/(i×p×z×d2) <[tср] (5.26)

где tср – расчетное напряжение на срез, МПа;

[tср] = 0,2×sт, допускаемые напряжения на срез, МПа;

Q – сила действующая на соединение, Н;

i – число плоскостей среза;

d – диаметр не нарезанной части болта;

z – число болтов.

Для принятых болтов [tср] = 0,2×340 = 68 МПа,

Определим диаметр болтов:

d = Ö4×Q/(i×p×z×[tср]), м (5.27)

d = Ö4×3260,3440/(1×p×3×68×106) = 0,0045, м;

принимаем ближайший больший диаметр d = 0,006 м.

Определим силу трения скольжения в подшипниках, для расчета передачи «винт – гайка». По рисунку 5.4а суммарная сила трения в подшипниках:

Fтр = f×(R1 + R2), Н (5.28)

где f – коэффициент трения скольжения между сталью и бронзой 0,12.

Fтр = 0,12×(3260,3440 + 1917,8494) = 621,3832 Н,

Рассчитаем передачу «винт – гайка» [4]. В процессу работы винт подвергается сжатию и кручения, поэтому принимаем за расчетную силу Fв = 1.2×Fтр = 1,2×621,3832 = 745,6599 Н.

Для винта принимаем Сталь 10 (ГОСТ 1050 – 88) [1], предел текучести которой sт = 210 МПа, определим допускаемые напряжения, задаваясь коэффициентом запаса прочности конструкции n = 2.

[s] = 210/2 = 105 МПа,

Внутренний диаметр винта

d1 = Ö4×Fв/(p×[s]), м (5.29)

d1 = Ö4×745,6599/(p×105×106) = 0,003, м

принимаем d1 = 0,012 м, т.к. увеличили диаметр в несколько раз расчеты на прочность проводить нет необходимости.

Шаг резьбы:

S = d1/4, м (5.30)

S = 0,012/4 = 0,003 м.

Наружный диаметр резьбы:

d = 5/4×d1, м (5.31)

d = 5×0,012/4 = 0,015 м.

Средний диаметр резьбы винта:

d2 = (d + d1)/2, м (5.32)

d2 = (d + d1)/2 = (0,012 + 0,015)/2 = 0,0135 м.

Ход винта принимаем равным L = 0,16 м.

Рассматривая винт как стрежень с шарнирным креплением концов, необходимо проверить его на продольную устойчивость:

Радиус инерции круглого сечения:

i = d1/4, м (5.33)

i = 0,012/4 = 0,003, м.

Гибкость винта

j = L/i <100 (5.34)

j = 0,16/0,003 = 53,3333 <100.

Определим необходимый вращающий момент:

М = 0,088×Fв×d2, Нм (5.35)

Страницы: 1 2 3

Еще о транспорте:

Оценка разгонных свойств АТС
Расчет и построение графиков ускорений, времени и пути разгона. ( рис.5,6,7) Расчет ускорений разгона при ускоренном движении, где суммарный коэффициент сопротивления движению при установившемся движении при движении без подъемов и спусков для радиальных шин ƒ=0.02-коэффициент сопротивления ка ...

Разработка принципиальной и функциональной схемы САУ
Принципиальная схема дает представление о составе системы, подлежащей автоматизации, и принципе включения в неё устройств автоматики. Одинаковые силовые устройства, встречающиеся в схеме несколько раз (например, полупроводниковые преобразователи), достаточно изобразить подробно однократно, а в даль ...

Техническая эксплуатация микропроцессорных систем
Микропроцессорные системы ЖАТ строятся на базе вычислительных комплексов, включающих в себя микроЭВМ, микропроцессорные контроллеры, устройства связи с объектами управления, другие изделия вычислительной техники и информатики с использованием традиционных приборов и устройств ЖАТ: реле, схем рельсо ...

Главное Меню

Copyright © 2020 - All Rights Reserved - www.transportine.ru